Data Analytics in Support of Advanced Planning & System Operations

San Diego Gas & Electric Co.

- Regulated public utility
 - Founded April 18, 1881
- Owned by Sempra Energy
- Service delivery to 3.4 million consumers
 - Serving the 8th largest city in the U.S.
 - 1.4 million electric meters (1.33M operational AMI meters)
 - 840,000 natural gas meters
- Coverage area spans 4,100 square miles (10,600 square kilometers)

Strategic Focus

Our mission

—" We provide safe, reliable energy infrastructure and services that allow our communities to grow and prosper."

Our priorities

- Reduce Rates: increased electric system throughput and higher reliability mean lower average rates and better service to customers
- Achieve Efficiencies: improvement of data analytics will lead to achievement of better operational efficiencies
- Manage Growth: management of the rapidly growing data stream and associated decision making will be essential to managing growth

Objective

- Address the anticipated "data tsunami" and improve data management
 - Demonstrate solutions to problems stemming from the extensive amount of realtime and stored data being archived from field devices
 - Identify the data mining procedures and the data-archiving methods,
 - Utilize this data to improve power system operations
- Document solutions deemed to be best practices and make available to stakeholders

Our Challenges

- Bring together data from various sources:
 - AMI (smart meters),
 - rooftop PV and other customer generation,
 - voltage data, load, outage data,
 - equipment failure, O&M,
 - attributes of our system in GIS, weather, etc.
- Corrective maintenance streamlining and automating to eliminate or enhance manual processes
- Analyze the individual business needs or requirements around data capture.

Key Drivers

- Meet the goals of SB17 to modernize utility power system infrastructure
- Protect against cybersecurity and critical infrastructure threats
- Safely, reliably and affordably integrate technologies that help achieve the State's energy goals
- Demonstrate California 's leadership in new technology
- Develop and maintain a skilled workforce versed in newest technologies

Example Use Cases

- Autonomously query data to draw trends in equipment usage/failure and provide confidence levels associated with failure rates and projected inventory needs.
- Autonomously query data to draw trends in transformer loading capabilities, including propensities to be oversized or undersized in order to ensure proper asset utilization and fusing coordination.
- Mine existing data to improve operating practices such as Conservation Voltage Reduction (CVR) and Volt/VAr management.

Project Concept

Data sources:

Project Approach

Phase 1 – Requirements Definition

Task #1 – Identify Data Sources & Data Types

Task #2 – Identify
Prospective Uses of Data

Task #3 – Specify Data Analytics System Needs

Phase 2 – System Implementation

Task #4 - Design Test System

Task #5 - Implement Test System

Phase 3 – Demonstration, Analysis and Reporting

Task #6 – Conduct Demonstration (lab/field)

Task #7 - Analysis and Reporting

Project Tentative Timeline

Contact

- ☐ For questions or interest in the project, please contact:
 - Project Technical Lead Yvette Oldham (<u>yoldham@semprautilities.com</u>)
 - EPIC Program Manager Frank Goodman (<u>fgoodman@semprautilities.com</u>)